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1. Abstract

Simultaneous Localization and Mapping (SLAM) is a
foundational component in robotics and augmented real-
ity, enabling systems to understand and navigate unknown
environments. While SLAM has traditionally required
specialized hardware and intricate calibration procedures,
the growing capabilities of consumer devices—particularly
smartphones—open the door to more accessible solutions.
The iPhone, equipped with LiDAR sensors, cameras, and
inertial measurement units (IMUs), provides an ideal plat-
form for developing lightweight and portable SLAM sys-
tems.

In this work, we present iLoco, a real-time, plug-and-
play visual SLAM system that leverages the iPhone’s built-
in RGB-D camera and IMU to enable accurate localization.
By integrating a sensor suite from the iPhone, iLoco de-
livers pose estimation utilizing ORB feature matching for
RGB-D visual feature extraction and tracking, while GT-
SAM is employed to tightly integrate inertial measurements
with visual odometry for enhanced robustness. The system
is engineered to be a “slap-on” solution, requiring minimal
setup and no external calibration, making it especially suit-
able for rapid prototyping, educational demonstrations, and
accessible SLAM research. The design of iL.oco prioritizes
ease of use and adaptability, allowing a wide range of users,
from students to developers, to harness the power of real-
time SLAM using everyday mobile devices.

2. Related Work

SLAM systems have been developed to address the chal-
lenges of accurate and scalable localization and mapping
across various platforms and sensing modalities. These sys-
tems are designed to provide reliable performance in di-
verse environments and applications. Many frameworks,
such as ORB-SLAM3, integrate multiple sensor types, such
as monocular, stereo, and visual-inertial, to enable robust
mapping through advanced optimization techniques. Other
systems focus on optimizing visual-inertial odometry for
mobile and embedded platforms, often utilizing sliding-
window approaches for improved efficiency. Some solu-
tions cater to specific use cases, like robotics, by combin-
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ing sensors such as RGB-D and IMU, though they can be
limited by computational constraints and sensor capabili-
ties. Additionally, loop closure techniques, such as Bag-of-
Words models, improve map accuracy by enabling spatially
consistent feature matching. Our system, iLoco, draws on
these ideas, focusing on providing a real-time, accessible
solution for localization and mapping on consumer-grade
mobile devices with minimal setup or specialized equip-
ment.

2.1. ORB-SLAM3

ORB-SLAM3 is a major advancement in SLAM re-
search, offering a unified, tightly-coupled framework for
monocular, stereo, RGB-D, and visual-inertial SLAM. The
back-end performs local and global bundle adjustment and
pose graph optimization for loop closure. A multi-map ar-
chitecture allows the system to manage and merge multiple
local maps, enhancing robustness in dynamic scenes and
long trajectories. Loop closure is handled via a bag-of-
words (DBoW?2) place recognition system, which detects
revisited locations and applies Sim(3) transformations to
correct drift. The system also supports re-localization and
map reuse, making it suitable for long-term autonomy and
AR/VR applications.

In contrast, iLoco is optimized for real-time SLAM on
iPhones, leveraging the device’s built-in RGB-D camera
and IMU without requiring calibration. Data is streamed
over TCP and processed using GTSAM, which constructs
a factor graph incorporating visual odometry, IMU pre-
integration, and loop closure. Although ORB-SLAM3 pri-
oritizes flexibility and precision across various platforms,
it requires a specialized setup. iLoco sacrifices some gen-
erality for accessibility and ease-of-use, offering a plug-
and-play SLAM solution tailored for education, prototyp-
ing, and mobile research. [1]]

2.2. VINS-Mobile

VINS-Mobile is a state-of-the-art, real-time, tightly-
coupled visual-inertial odometry (VIO) system designed for
mobile platforms. It extends the capabilities of VINS-Mono
to operate efficiently on embedded devices like smartphones
and aerial robots. The system fuses monocular camera data



with IMU measurements using a nonlinear optimization-
based sliding window approach. In this architecture, a
fixed number of recent keyframes are maintained, and their
poses are jointly optimized with the associated IMU pre-
integrated measurements, resulting in accurate and low-
latency motion estimation. To initialize the system, VINS-
Mobile includes a robust visual-inertial initializer that es-
timates scale, gravity, and velocity using visual structure-
from-motion followed by IMU alignment.

Compared to iLoco, VINS-Mobile has several similar
core components, such as IMU pre-integration, BoW-based
loop closure, and sliding window optimization, but differs
in key areas. VINS-Mobile is designed for monocular cam-
eras, requiring external mapping tools or dense stereo re-
construction for 3D scene understanding. In contrast, iL.oco
directly leverages the iPhone’s RGB-D camera, simplifying
depth acquisition and reducing reliance on structure-from-
motion. Furthermore, while VINS-Mobile requires man-
ual sensor calibration and hardware setup, iLoco capital-
izes on Apple’s built-in sensor fusion and calibration frame-
works to offer a plug-and-play experience with zero calibra-
tion. Furthermore, iLoco uses GTSAM for back-end opti-
mization, emphasizing modularity and extensibility for ed-
ucational and prototyping purposes, whereas VINS-Mobile
employs a custom, tightly coupled optimization framework
optimized for performance on embedded platforms. [2]

2.3. Robot Localization Using Camera & IMU

Attamimi et al. [3] presented a visual-inertial SLAM sys-
tem for domestic service robots, integrating RGB-D data
and IMU measurements from an Intel RealSense D435i.
Their implementation used the RTAB-Map algorithm for
visual odometry and passed IMU data through a Madgwick
filter and an Extended Kalman Filter (EKF) to enhance pose
estimation accuracy. The system was deployed on a Jet-
son Nano and demonstrated the capability to generate both
2D and 3D environmental maps. While effective in en-
vironments with rich visual features, their approach faced
challenges in low-texture scenes and environments with re-
flective surfaces, resulting in tracking failures and degraded
depth data. Additionally, limitations were observed due to
the low IMU refresh rate and computational constraints of
the embedded hardware.

Unlike the work of Attamimi et al. 3], our work does
not rely on wheel encoders or onboard compute mod-
ules, but seeks to use commonly available sensors on an
iPhone as the sensing platform, capable of streaming RGB
video, depth data using LiDAR, and IMU measurements
(accelerometer and gyroscope) over a wireless connection.
Through Apple’s built-in framework for accessing motion
data, Core Motion, we are able to set the IMU refresh rate
in Swift code.

2.4. Importance of Loop Closure for Visual SLAM

A variety of methods have been proposed to enhance
the robustness and efficiency of loop-closure detection. Al-
though traditional feature-based matching approaches are
relatively straightforward, they tend to face challenges re-
lated to high computational cost and limited reliability, par-
ticularly in the presence of large-scale data, visual ambigu-
ities, and environmental variability.

The work by Zhang et al. (2018) provides critical in-
sights into loop-closure detection using a Bag-of-Words
(BoW) model built on ORB (Oriented FAST and Rotated
BRIEF) features. Their method effectively tackles the chal-
lenge of perceptual ambiguities and cumulative drift com-
mon in visual SLAM. By structuring the visual vocabulary
into a hierarchical dictionary through k-means++ clustering
and employing TF-IDF weighting, their approach achieves
significant computational efficiency and robust loop-closure
detection. The hierarchical dictionary approach optimizes
search efficiency, ensuring fast query responses even as the
dictionary increases in size. Furthermore, Zhang et al. im-
prove reliability by integrating spatial consistency checks
using Pose Graph optimization to validate detected loop
closures, significantly reducing false positives and improv-
ing overall system accuracy.

Our iLoco project leverages the robust BoW approach
presented by Zhang et al., specifically benefiting from its ef-
ficient loop-closure detection mechanism. However, iLoco
further advances this approach by incorporating real-time
integration of IMU data and RGB-D visual odometry using
GTSAM, significantly improving localization accuracy and
robustness. Additionally, iLoco differentiates itself by sim-
plifying usability through its design specifically tailored for
widely accessible smartphone platforms, eliminating the re-
quirement for external calibration and specialized hardware
setups. [4]]

3. Method

iLoco is designed to enable plug-and-play real-time
SLAM using the built-in iPhone sensor suite. As shown
in the diagram below, the system begins by collecting data
from the iPhone’s LiDAR, RGB camera, and IMU. This
multi-modal data is transmitted via TCP to a Linux-based
computer that performs data parsing, separating the IMU
and visual data streams for subsequent processing. The
parsed data is then fed into two parallel pipelines: one for
IMU Odometry and the other for Visual Odometry. IMU
Odometry estimates motion based on accelerometer and gy-
roscope data, providing high-frequency pose updates. Si-
multaneously, visual odometry computes motion estimates
by tracking ORB features across RGB-D image frames.
These independent pose estimates are then optionally re-
fined through Bag-of-Words, a loop closure module, which



identifies revisited locations using a feature matching ap-
proach to reduce drift. All measurements—IMU, visual
odometry, and loop closures—are integrated into a fac-
tor graph representation using the GTSAM optimization li-
brary. The factor graph encapsulates the system’s motion
and sensor constraints over time, allowing for better tra-
jectory estimation. The final result, as visualized in the
bottom-left of the figure, is an accurate trajectory map of
the phone’s motion through space.
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Figure 1. System Architecture for iLoco

3.1. Data Collection

To facilitate real-time sensor data collection for our
iLoco project, we developed a Swift application running
on a LiDAR-equipped iPhone. The application captures
synchronized RGB and depth data using Apple’s AV-
CaptureVideoDataOutput and AV CaptureDepthDataOutput
APIs, ensuring tight synchronization through AVCapture-
DataOutputSynchronizer. This synchronization aligns each
RGB frame precisely with its corresponding depth map
from the LiDAR sensor. Additionally, we utilized Ap-
ple’s CoreMotion framework to collect high-frequency iner-
tial measurements, including accelerometer and gyroscope
data, at 100 Hz. These measurements are crucial for sensor
fusion, providing essential orientation and motion informa-
tion that enhances the robustness of our SLAM pipeline.

Our streaming architecture includes two separate TCP
streams to optimize data throughput and manage latency ef-
fectively. The first stream transmits inertial measurement
unit (IMU) data at 100 Hz, while the second stream handles
RGB-D data at a frame rate of 30 frames per second (fps).
To minimize transmission latency and bandwidth usage,

RGB frames are encoded using the H.264 codec directly
within our Swift application. On the server side, we decode
this H.264 stream in Python, enabling near-instantaneous
reconstruction of video frames for real-time processing.

The overarching goal of this design is to achieve real-
time SLAM processing capabilities. By carefully balancing
sensor data rates, streamlining network communication via
dual TCP streams, and employing efficient video encoding
and decoding strategies, our system aims to deliver accurate
localization and mapping with minimal latency, suitable for
dynamic and interactive augmented reality and robotic ap-
plications.

RGB (Left) and Depth (Right) Frames

Figure 2. Example of RGB and Depth Data

3.2. IMU Odometry

For IMU odometry, timestamped accelerometer and gy-
roscope data was collected from the iPhone’s IMU, cap-
turing the necessary motion information. The orientation
of the data is shown in the figure below. Skew-symmetric
matrices were constructed from the angular velocity data,
enabling efficient computation of rotational updates. Ro-
drigues’ formula, along with Taylor expansions, was used
to handle small-angle approximations for rotation integra-
tion.

The IMU state was propagated using discrete-time inte-
gration with a zero-order hold assumption, simplifying the
process by assuming constant IMU measurements over each
time step. With the assumption of piecewise constant ac-
celeration and angular velocity measurements, these values
were integrated to update velocity and position states. For
rotation updates, the exponential map was applied to the an-
gular velocity vectors, allowing for continuous integration



of angular velocity into a rotation matrix.

As the system moved, velocity and position estimates
were updated by integrating accelerometer data, while the
rotation matrix was updated using the angular velocity.
Bias-corrected IMU data was integrated for a more accurate
trajectory representation. By continuously updating these
values, the full trajectory of the system, including both posi-
tions and orientations, was estimated, providing a real-time
odometry solution.
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Figure 3. XYZ Orientation for iPhone during IMU Odometry

3.3. Visual Odometry

The visual odometry process began with capturing RGB
images from the iPhone’s camera and LiDAR depth data.
ORB (Oriented FAST and Rotated BRIEF) was used to
detect keypoints and extract descriptors from consecutive
RGB frames. The keypoints and their corresponding de-
scriptors were then matched using FLANN (Fast Library for
Approximate Nearest Neighbors) with LSH (Locality Sen-
sitive Hashing) indexing, which allowed for efficient feature
matching across frames. Lowe’s ratio test was applied to
filter out poor matches, ensuring that only the most reliable
correspondences were retained.

Depth maps obtained from the LiDAR sensor were con-
verted into 3D point clouds by applying the camera’s in-
trinsic parameters, which allowed for the projection of 2D
keypoints onto the 3D space. From these point clouds, valid
3D points were extracted from the matched 2D keypoints,
while invalid depth values were filtered out to improve the
accuracy of subsequent calculations.

A 3D rigid transformation between the matched point
clouds was then estimated using RANSAC (Random Sam-

Feature Matches

Figure 4. Output from ORB Feature Matching
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Figure 5. Point Clouds Obtained from Depth Data

ple Consensus) to robustly reject outliers. SVD (Singular
Value Decomposition) was applied to solve for the optimal
transformation that aligned the two point clouds. Finally,
the relative transformations between consecutive frames
were accumulated, and matrix multiplication was used to
compute the absolute poses of the device over time. This
allowed for the continuous tracking of the device’s trajec-
tory in 3D space.



3.4. Loop Closure

In our SLAM implementation, we integrated a loop clo-
sure mechanism using a Bag-of-Words (BoW) approach
combined with ORB features for visual recognition. The
purpose of loop closure detection is to identify previously
visited locations by comparing visual features across differ-
ent frames, significantly reducing drift and enhancing map
accuracy.

We began by training a visual vocabulary based on ORB
descriptors extracted from selected video frames at regular
intervals. This vocabulary serves as a reference dictionary,
facilitating rapid comparison between images. For each
incoming video frame, we extracted ORB descriptors and
computed their corresponding BoW representation, which
succinctly captures the visual content.

To efficiently detect potential loop closures, we imple-
mented a KD-Tree to store and query the BoW vectors from
past keyframes. Upon receiving a new frame, its BoW de-
scriptor was compared against the database using cosine
similarity, enabling fast retrieval of visually similar frames.
Frames meeting a predefined similarity threshold and tem-
poral spacing criteria were marked as loop closure candi-
dates.

Subsequently, to validate each loop closure candidate,
we performed detailed feature matching between the cur-
rent and candidate frames. Loop closures were accepted
only when a sufficient number of feature matches exceeded
a certain confidence level, ensuring accurate loop closure
detection.

Identified loop closures were integrated into the GTSAM
optimization framework, further refining the SLAM trajec-
tory by minimizing accumulated localization errors. How-
ever, the loop closure was not as effective as it could have
been due to the visual odometry and IMU data being too
noisy, and we didn’t allow the data to run long enough to
create enough constraints to dramatically increase the accu-
racy of the map.

3.5. GTSAM

We employ GTSAM to perform batch visual-inertial
SLAM, combining IMU preintegration with visual odom-
etry to estimate a globally consistent trajectory. Our
system builds a factor graph where IMU measurements
are integrated between visual keyframes, producing high-
frequency motion constraints that capture the system’s dy-
namics. Visual odometry is used to provide relative pose
constraints between keyframes, anchoring the solution to
observed motion in the environment. The optimization is
carried out incrementally using ISAM2, allowing us to re-
fine the trajectory in minibatches without recomputing the
full solution from scratch.

This framework is particularly well-suited for our
dataset, which includes both high-rate inertial data and

sparse RGBD visual observations. By leveraging IMU
preintegration and incorporating both motion priors and
sensor noise models, we can fuse multi-rate, multi-modal
data streams into a single consistent trajectory estimate. The
result is a smooth and drift-reduced pose sequence that re-
spects both the local high-frequency inertial dynamics and
the global geometric constraints provided by visual odom-
etry. This serves as the backbone for evaluating our down-
stream video plan prediction and alignment tasks.

4. Results

We evaluate our visual-inertial SLAM system on a
dataset of 8 trajectories collected in indoor environments
where depth sensing is viable. These trajectories span a va-
riety of common indoor scenes—including kitchens, conve-
nience stores, living rooms, and basements—with each run
lasting no more than one minute. During data collection,
we enforce a consistent ground-truth trajectory by replay-
ing pre-defined motion paths, allowing for direct compari-
son between the estimated and true poses.

In Figure 6, we qualitatively compare the final optimized
trajectory produced by our graph-based SLAM pipeline to
two baseline methods: pure IMU odometry and pure vi-
sual odometry. The IMU-only baseline exhibits significant
drift over time, as small integration errors accumulate with-
out any correction from external observations. On the other
hand, visual odometry alone provides frequent relative pose
updates but suffers from jitter and noise due to local fea-
ture tracking ambiguities and occlusions. In contrast, our
combined method fuses both sources of information using
factor graph optimization, resulting in trajectories that are
much smoother and closely aligned with ground truth.

We also present a quantitative comparison in Figure 7,
where we plot the average pose error as a function of
elapsed time across all 8 trajectories. At each timestep,
we compute the average translational error as the Euclidean
distance between the estimated and ground truth positions,
and the average rotational error as the absolute angular
difference in the XZ-plane (yaw) between estimated and
ground truth orientations. These errors are averaged across
all trajectories to obtain smooth trends over time. As ex-
pected, IMU-only error grows rapidly with time, while vi-
sual odometry maintains a bounded but noisy error profile.
Our fused SLAM system consistently achieves the lowest
error across all time segments, confirming that the integra-
tion of IMU and visual cues through graph optimization
substantially improves both short-term accuracy and long-
term consistency. These results validate the robustness of
our approach in diverse indoor settings.

You can also find our project video at this link: https:
//youtu.be/goo5J6C9n0c


https://youtu.be/goo5J6C9n0c
https://youtu.be/goo5J6C9n0c

Time (s) IMU Odometrg Visual Odomelzry Our Method )

(Avg * SD) [m”] (Avg % SD) [m] (Avg % SD) [m”]

10 0.405 £0.075 0.281£0.018 0.292 £0.732
20 1.632 £0.075 0.541 +0.243 0.56 +0.332
30 4.542 £0.195 1.27 £2.549 1.168 + 1.352
40 8.988 +0.465 3.485 +1.162 2.14+1.192
50 13.824 + 1.485 6.13 £ 13.503 3.296 +2.088
60 18.6 + 2.985 7.854 +6.778 4.024 +2.136

Figure 6. Quantitative Comparison of Algorithms
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Figure 7. Trajectories from 2 Test Runs using iLoco

5. Conclusion

Our experiments highlight several important perfor-
mance trends across different localization methods. While
IMU-based tracking provides relatively reliable estimates
over longer linear motions (greater than 5 meters), it suf-
fers from cumulative drift without external correction. Vi-
sual odometry, in contrast, performs reasonably well in tex-
tured areas but degrades significantly during sharp turns

or in environments with textureless walls, such as hall-
ways or corners. Our GTSAM-based fusion framework
offers a balanced solution, with improved robustness and
accuracy across diverse trajectories. Notably, using mini-
batch optimization enhances convergence stability without
requiring full batch processing. Although our fused method
(iLoco) consistently outperforms standalone IMU or VO,
it still trails behind ARKit in terms of rotational accu-
racy—especially during dynamic motions or in low-light
settings.

Looking ahead, we plan to incorporate full mapping ca-
pabilities to support loop closure and improve long-term
consistency across repeated traversals. Additionally, we
aim to decouple and integrate visual and depth sensing (e.g.,
LiDAR or structured light) to better handle occlusions, dy-
namic lighting, and structural sparsity. These improvements
will allow our system to generalize more robustly across
both structured indoor scenes and more challenging envi-
ronments.

To support reproducibility and encourage further re-
search, we have open-sourced our implementation. The
full codebase is available at: https://github.com/
adeepdas/iLoco
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