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1. Abstract

JPEG is a widely used image compression standard, but
the decompression process is computationally intensive and
due to its widespread usage, provides a reason for hav-
ing a dedicated module in a System-on-Chip (SoC) plat-
form. This project introduces a hardware accelerator de-
signed to efficiently perform JPEG decompression on a mo-
bile System-on-Chip. The design integrates key stages of
the decoding pipeline—including entropy decoding, coef-
ficient reconstruction, inverse transforms, chroma upsam-
pling, and color space conversion—into a pipelined, and
almost multiplier free architecture. The accelerator was
evaluated on a variety of JPEG images and demonstrated
significant performance gains compared to software-based
decoding, making it well-suited for embedded and mobile
applications.

2. Introduction

JPEG is one of the most widely adopted standards for
lossy image compression due to its ability to significantly
reduce file sizes while maintaining acceptable visual qual-
ity. It is used extensively across mobile devices, digital
cameras, web platforms, and embedded systems, making
it a critical part of the global image processing pipeline [1].
While the compression process is usually performed offline
or on high-performance servers, decompression must often
happen in real time, especially on power-constrained de-
vices such as smartphones, tablets, and Internet-of-Things
(IoT) platforms.

JPEG decompression involves multiple computation-
heavy stages, including entropy decoding, dequantization,
inverse discrete cosine transform (IDCT), chroma upsam-
pling, and color space conversion. These steps place a con-
siderable load on general-purpose processors, especially in
embedded contexts where performance, energy efficiency,
and thermal budgets are tightly constrained.

To address these challenges, this work presents a hard-
ware accelerator for JPEG decompression designed specif-
ically for integration into mobile SoCs. The design imple-
ments a pipelined JPEG decoding architecture while main-
taining low area and power overhead. Key components in-

Figure 1. JPEG Encoding Process

clude:

• A high-throughput Huffman decoder that uses parallel
bitmask matching and supports variable-length code-
words,

• A multiplier-free 2D IDCT using Canonical Signed
Digit (CSD) approximations and shift-add logic for ef-
ficient computation,

• A chroma supersampling module that outputs four up-
sampled blocks per cycle to match the resolution of
luminance data, and

• A color conversion unit using CSD-based fixed-point
arithmetic for real-time YCbCr to RGB transforma-
tion.

By implementing the full decoding pipeline in hardware,
this accelerator enables faster image rendering and lower
CPU usage, making it suitable for real-time video, camera
preview, and image-intensive mobile applications. Experi-
mental results demonstrate that the design achieves consid-
erable speedup compared to software-based decoding such
as MATLAB’s imread() function. Figure 1 shows a high
level diagram of the JPEG encoding process, which is what
the decoder will perform the inverse of.

3. Survey of Previous Related Work
3.1. GPU-Based JPEG Decoding Using CUDA

Tade and Ansari [1] present a CUDA-accelerated JPEG
decoder aimed at improving the performance of the de-
compression pipeline on general-purpose GPUs. Their ap-
proach focuses primarily on offloading the inverse discrete



cosine transform (IDCT), one of the most computation-
ally demanding stages in JPEG decoding. By leverag-
ing CUDA’s thread-level parallelism, they implement an
8×8 IDCT kernel that processes DCT blocks concurrently
across hundreds of GPU threads. Their implementation
uses floating-point arithmetic and applies a standard sep-
arable 2D IDCT method, executing row-wise and column-
wise transforms sequentially. The authors report substan-
tial speedups when decoding large images, especially when
compared to software-based decoding on CPUs.

While their results demonstrate the effectiveness of using
GPUs for accelerating JPEG decoding, their approach tar-
gets desktop-class computing environments with relatively
abundant power and thermal budgets. This makes the solu-
tion less suitable for resource-constrained embedded or mo-
bile platforms, where power efficiency and predictable la-
tency are critical. Moreover, the use of floating-point oper-
ations and reliance on GPU memory hierarchies introduces
complexity and energy overhead.

In contrast, our work implements a hardware JPEG de-
coding accelerator in Verilog, optimized for integration into
mobile SoC architectures. Rather than relying on floating-
point units or massive thread parallelism, our design uses
fixed-point arithmetic and shift-add-based logic to approxi-
mate multiplications via CSD representations. Specifically,
our 2D IDCT pipeline is based on a modified version of
Loeffler’s algorithm, which eliminates multipliers entirely
in favor of hardware-friendly additions and shifts, reduc-
ing both area and power. Unlike the CUDA approach that
treats each DCT block independently on a massively paral-
lel GPU, our design is deeply pipelined—capable of accept-
ing a new block every cycle after initial latency, making it
more suitable for real-time processing in streaming multi-
media systems.

3.2. Accelerating JPEG Decompression on GPUs

Weißenberger and Schmidt [2] presented a GPU-based
JPEG decompression architecture that exploits fine-grained
parallelism inherent in block-based image processing. Their
work demonstrates the feasibility of high-throughput de-
compression by leveraging the massively parallel process-
ing capabilities of modern GPUs. The resulting implemen-
tation significantly outperforms baseline CPU decoders and
even specialized libraries like NVIDIA’s nvJPEG, espe-
cially for high-resolution images.

While GPU acceleration provides impressive through-
put, it is not always ideal in embedded or resource-
constrained systems due to power and thermal limitations.
As such, hardware-based acceleration using FPGAs or
ASICs remains a compelling alternative if the need for mul-
timedia processing is high, offering predictable latency and
lower power consumption. This project aims to explore
such an alternative by designing a JPEG decoding acceler-

ator in Verilog, focusing on low-level parallelization of the
IDCT and Huffman decoding stages.

3.3. An FPGA-based JPEG Preprocessing Acceler-
ator for Image Classification

In contrast, FPGA-based accelerators offer a promis-
ing alternative for efficient JPEG decoding in resource-
constrained environments. Li et al. [3] proposed an FPGA-
based JPEG preprocessing accelerator aimed at improv-
ing the throughput and energy efficiency of image classi-
fication tasks. Their design focuses on accelerating non-
convolutional operations, including JPEG decoding, image
block splicing, and scaling, which are often bottlenecks in
end-to-end image classification pipelines. By implement-
ing these preprocessing steps on an FPGA, they achieved
a throughput of 875.67 frames per second and an energy
efficiency of 0.014 J/frame on a Xilinx XCZU7EV FPGA.
When integrated with an Inception V3 accelerator, the end-
to-end system demonstrated a 28.27× speedup over CPU-
based implementations and a 2.32× improvement in energy
efficiency compared to GPU-based systems.

These studies highlight the potential of hardware accel-
erators in enhancing JPEG decoding performance. As a re-
sult, our project aims to develop a Verilog-based JPEG de-
coding accelerator suited for mobile SoC platforms. By fo-
cusing on hardware-level optimizations, we aim to achieve
real-time JPEG decoding with minimal power and area
overhead, making it suitable for embedded and mobile ap-
plications.

3.4. Improved Loeffler-Based 2D DCT/IDCT Hard-
ware Acceleration

Zhou and Pan [4] present a hardware accelerator for
2D 8×8 DCT/IDCT operations, utilizing an enhanced Lo-
effler architecture. Their design features an 8-stage pipeline
that optimizes the data stream of the Loeffler 8-point 1D
DCT/IDCT, tailored for image and video processing appli-
cations. By employing fixed-point arithmetic and Canoni-
cal Signed Digit (CSD) encoding, the architecture achieves
a multiplication-free approximation of DCT coefficients
using only adders and shifters. A notable innovation is
their fast parallel transposed matrix architecture, which ef-
ficiently handles row-column coefficient conversions with
reduced circuit complexity. Implemented on a Virtex-7
XC7VX330T FPGA, the accelerator operates at 288 MHz,
achieving a throughput of 558 million pixels per second and
processing Full HD frames at up to 269 frames per sec-
ond. The design completes 2D DCT/IDCT operations on
8×8 blocks in just 33 clock cycles.

In our project, we adapt this multiplier-free approach for
the 2D IDCT, leveraging CSD-based approximations and
shift-add logic to eliminate the need for multipliers. How-
ever, our design diverges in several key aspects. While



Zhou and Pan focus on a high-throughput solution suit-
able for high-resolution video processing, our implemen-
tation targets integration for low power consumption and
minimal area overhead. Additionally, our architecture in-
tegrates the entire JPEG decoding pipeline—including en-
tropy decoding, dequantization, chroma upsampling, and
color space conversion—into a cohesive, low-latency sys-
tem, while they only create an accelerator for the IDCT.

4. Description of Design

Each of the modules described in Figure 2 were imple-
mented in Verilog. Below are the descriptions of the core
modules:

4.1. Header Extraction

The encoded information of a JPEG is really folded into
sections that constitute its header. Two byte markers indi-
cate the start of a specific segment of data. These segments
contain key information such as the image size, the sub sam-
pling method, the quantization coefficient tables, and the
Huffman symbols and lengths. From the onset we designed
our accelerator to be passed a pure bit-stream over an AXI
(Advanced eXtensible Interface) bus. We selected AXI in
particular for its ubiquity particularly for FPGAs [5]. Hard-
ware platforms with configurable FPGA modules could be-
fit from on-the-fly JPEG acceleration. Much of the header
decoding is a serial operation, but the structure of the header
itself does not lend itself easily to hardware processing. As
a prepossessing step we utilize a Python script that converts
a JPEG image into a System Verilog (.svh) array of 32 bit
lines. Our system simulates the passing of the JPEG bit-
stream in 32-bit (AXI compatible) lines by walking this pre-
processed array. True implementations would perform this
with DMA transactions coordinated by the CPU.

Reading the segments presents some difficulty because
there is only a guarantee of byte alignment in the JPEG pro-
tocol, and there is a weak ordering of segments prior to the
Start-of-Scan demarcation. Two byte markers can appear in
four possible slots of the input lines or even cross the divide
between two lines creating offsets in the data processing
that propagate as we read in these tables and parameters.
These marked segments are also variable length. For exam-
ple, after witnessing a 0xFFC4 marker, there could be one,
two, or as many as four Huffman tables that follow. Two
distinct images that contain four Huffman tables might use
a single or up to four separate markers requiring flexibil-
ity in our hardware implementation. We also attempt to be
maximize efficiency and push a full 32-bits of our eventual
scan stream into the accelerator. However, we are slightly
inhibited by scattered instances of ’bit stuffing’ markers that
require delaying until we can pass a full line into the subse-
quent FIFO block.

Because we selected a very specific baseline JPEG pro-
tocol: ITU-T T.81 (1992) / ISO/IEC 10918-1 [6], we were
able to simplify the state machine significantly. Guarantees
of note include:

• 8-bit color precision

• Sequential (one-pass) encoding

• Huffman only codes (no arithmetic)

• A max of 2 AC and 2 DC tables

• Single SOS without restart markers

• 4:2:0 Chroma sub-sampling

Our header decoder allows for multiple images to be
passed in continuously through the decoder. Tables are up-
dated before a subsequent Start-of-Scan stream is pushed
through the remaining modules. This presents an advantage
for near contiguous JPEG workloads for example in appli-
cations for streaming or computer vision.

Figure 2. JPEG Decoding System Block Diagram

4.2. Huffman Decoding

After the header is read the symbols and lengths are
passed through a Huffman modules to generate codes. This
operation involves bit shifts and adds and is very quick as
codes are constrained to under 16 bits and there are 256
or fewer symbols. As the Start-of-Scan stream comes in
from the FIFO we examine 16 bits at a time using parallel
look-ups against all Huffman codes loaded from the header.
Each Huffman code has a corresponding length, and the
decoder uses bit-masks to search for matches of different
lengths against the current bit-stream prefix. Once a match-
ing code is found, the decoder outputs the corresponding
symbol from the Huffman table.



Every 8×8 pixel block (canonically deemed a minimum
coded unit (MCU) in JPEG) starts with a DC term (intuited
as the brightness of that MCU). This first term uses a delta
encoding from preceding terms and is handled with simple
subtraction. AC terms (for subsequent block entries) use
variable length encoding (intuited as the spatial details of
the JPEG). These AC terms each contain a run length (how
many zeros precede the next non-zero value in the zig-zag
scan), and a Variable Length Integer (VLI) size, which tells
how many bits should be read next to form the actual value
(amplitude) of the non-zero coefficient. The decoder uses
this VLI to fetch the correct number of bits from the in-
put FIFO for the VLI decoder, which reconstructs the orig-
inal quantized DCT coefficient. These coefficients are then
stored into a 64-element buffer, representing an 8x8 MCU.

4.3. 8x8 Block Buffer

The 8x8 block buffer functions as a circular FIFO that re-
constructs a complete 64-coefficient block from run-length
encoded JPEG data. First, it receives input from the
Huffman decoder and VLI decoder, which provide a run-
length and the corresponding coefficient value. Using a tail
pointer, the buffer skips ahead by the run-length, effectively
inserting that number of zeros into the output block. It then
writes the decoded coefficient at the updated position. This
process continues until either the buffer fills all 64 positions
or an End of Block (EOB) symbol is received, which in-
dicates that the remaining positions should be padded with
zeros. Once either condition is met, the buffer outputs the
full 8x8 coefficient block for dequantization.

4.4. Inverse Zig Zag

In JPEG encoding, the 64 DCT coefficients of an 8×8
block are arranged in a zig-zag order before compression.
This ordering groups the low-frequency coefficients first
(which carry most of the image’s visual information) and
places the high-frequency coefficients later, which are often
zero after quantization. This pattern increases the effective-
ness of run-length encoding (RLE) by clustering long runs
of zeros together toward the end of the sequence. Conse-
quently, during decoding, the 8x8 block needs to be “in-
verse zig zagged” to reverse the ordering, restoring the co-
efficients to their original 8×8 spatial positions. A hardware
module implements this using a lookup table where each
address corresponds to a position in the 1D zig-zag input
and outputs the correct 2D (row, column) index in the 8×8
block.

4.5. De-quantization

The dequantization stage restores the scale of the DCT
coefficients that were previously compressed during JPEG
encoding. Each coefficient in the reordered 8×8 block is
multiplied by a corresponding quantization factor retrieved

from the quantization table. These quantization values vary
by frequency component, with lower-frequency coefficients
typically receiving smaller weights to preserve more detail.

To maintain hardware efficiency, the dequantization
module is implemented using fixed-point arithmetic, with
all operations designed to avoid multipliers where possible.
This is achieved by encoding quantization table values us-
ing Canonical Signed Digit (CSD) representations, lower-
ing power consumption and circuit complexity.

The module processes all 64 coefficients in parallel over
multiple cycles, feeding the scaled output into the subse-
quent IDCT stage. Special care is taken to ensure that the
bit width of the dequantized values accommodates poten-
tial overflow while maintaining sufficient dynamic range to
preserve image fidelity.

4.6. 2D Inverse Discrete Cosine Transform (IDCT)

To perform the 2D IDCT, an improved version of Loef-
fler’s algorithm was used [2]. Loeffler’s algorithm uses 29
additions and 11 multiplications. The improved version in-
creases the number of pipelined stages from 4 to 8. Figure
3 shows the pipeline for the improved Loeffler’s algorithm.
In addition, the multipliers are replaced by using Canoni-
cal Signed Digit Representation approximations of constant
terms like cos(pi/8) and cos(pi/8) allowing for these com-
putations to be done combinationally, only using adds and
shifts. From the output of the 8x8 block in the dequantiza-
tion, each row of 8 elements is fed into a 1D IDCT mod-
ule using the improved loeffler’s algorithm which requires
8 cycles to compute the output of the row. The output of
each row is then gathered in another 8x8 arranged such that
the output of each of the 8 rows are transposed and then
each row is then fed into another 1D IDCT, which is used
to compute the IDCT of each column. In total, an 8x8 input
requires 33 clock cycles to compute. See Figure 4 for the
2D IDCT module pipeline.

Figure 3. 1D IDCT Pipeline using improved Loeffler’s Algorithm



Figure 4. 2D IDCT Pipeline

4.7. Chroma Supersampling

During the JPEG encoding process, the chroma compo-
nents (Cb and Cr) are stored at half the resolution of the lu-
minance component in both horizontal and vertical dimen-
sions (See Figure 5). While decoding, the Cb and Cr need
to be brought back to full resolution so they can be aligned
pixel-by-pixel with the Y data for proper color reconstruc-
tion.

The module upsamples each 8×8 chroma block into four
8×8 blocks. The supersampled chroma data is output as four
channels per cycle—one for each of the upsampled blocks.
These outputs are collected in a buffer along with the corre-
sponding Y blocks to form full-resolution YCbCr data for
downstream color conversion.

Figure 5. 4:2:0 Chroma Subsampling Example

To improve the visual quality of the upsampled chroma
components, we implemented a bilinear interpolation mod-
ule that performs full-resolution interpolation across the en-
tire 8×8 output grid. Unlike the nearest-neighbor approach,
which simply replicates chroma values, this module calcu-
lates each output pixel by blending the four surrounding in-
put pixels using bilinear weights derived from their relative
positions. The implementation avoids costly multipliers by
leveraging simple shift-and-add operations, ensuring it re-
mains hardware-efficient while producing smoother, more
natural color transitions in the final image.

4.8. Color Space Conversion

Once full-resolution YCbCr blocks are available, they
are converted to the RGB color space using integer approx-
imation formula and CSD for final image reconstruction.
Multiplications are implemented using shift-and-add oper-
ations, reducing the need for complex arithmetic units and
maintaining hardware efficiency. This conversion enables
the final RGB bitmap to be assembled and displayed.

5. Experimentation and Methodology
We tested our design using multiple JPEG images of dif-

ferent resolutions and compared the time to run MATLAB’s
imread() function on the image to simulation time of the ac-
celerator with the chosen clock period after synthesis. Fig-
ure 6 shows a comparison of the decoded image using the
accelerator and MATLAB.

Image Dim. Cycles
Hardware
Time (s)

MATLAB
Time (s)

Speed
up

PSNR
(dB)

spider-man 256x256 19243 0.000173 0.01762 101.74 28.21
tiger 900x599 366535 0.00330 0.016998 5.15 26.59
cat 1200x734 249763 0.00225 0.026119 11.62 24.56
nebraska 1280x800 339360 0.00305 0.022645 7.41 28.73

Table 1. Runtime and PSNR comparison between hardware de-
coder and MATLAB baseline. Hardware time calculated using a
9 ns clock period.

Figure 6. Comparison between decoded image using accelerator
(left) vs MATLAB imread() (right)

Metric Value
Area 11,834.7 µm2

Total Power 623.9 µW
Clock Frequency 111.11 MHz

Table 2. Post-synthesis area, power, and clock frequency

6. Analysis of Results
Based on Table 1, the accelerator demonstrates signif-

icant speedup across all tested images. For smaller im-
ages, the speedup reaches nearly 100×, while for larger
images, the speedup remains substantial at approximately
7.5×. In terms of output quality, the accelerator delivers ac-
ceptable results, with PSNR values consistently at or above
28dB—an important threshold noted in [3] as sufficient for
deep learning applications. This slight degradation in PSNR
is expected, as our design minimizes the use of multipliers,
relying instead on addition and shift operations throughout
most of the pipeline, except during the dequantization stage.

Unlike prior JPEG accelerators such as [1], [2], and [3],
which report performance in frames per second (FPS), we



were unable to conduct such measurements due to timing
constraints. However, our synthesis results in Table 2 pro-
vide insight into the accelerator’s efficiency. Notably, when
compared to [1], our design achieves faster decoding on a
larger image. While they report a decode time of 11.72ms
for a 600×522 image, our accelerator processes a 900×599
image (Tiger) in just 3.3ms.

7. Conclusion
We have presented a complete hardware JPEG decoding

accelerator targeted at mobile System-on-Chip (SoC) plat-
forms, where power, area, and latency constraints are par-
ticularly critical. The design integrates all major stages of
the JPEG decompression pipeline—including entropy de-
coding, dequantization, 2D IDCT, chroma upsampling, and
color space conversion—into a streamlined, pipelined ar-
chitecture that avoids the use of multipliers where possible.

The post-synthesis evaluation (Table 2) demonstrates
substantial performance gains over software-based decod-
ing, with the accelerator achieving up to 100× speedup (Ta-
ble 1) for small images and consistent improvements across
a range of resolutions. Despite the use of approximate arith-
metic for power and area efficiency, the design maintains
image quality within acceptable bounds, with PSNR val-
ues suitable for visual applications and machine learning
pipelines.

With a modest silicon footprint and low power consump-
tion, our implementation is well-suited for real-time image
processing in embedded and mobile systems. Future work
will focus on extending the architecture to support stream-
ing video, optimizing memory bandwidth, and validating
the system on FPGA and ASIC platforms.

8. Contributions
See Table 3 for each teach members contributions.

Name Work Done %
Matthew Button Huffman decoding, Table Extraction, VLI Decoding 20%
Kyle Park IDCT pipeline support, Chroma Upsampling, RGB Conversion 20%
Velu Manohar 2D IDCT design, Testbench, 1D IDCT 20%
Muhammad Khan 2D IDCT design, Testbench, PSNR analysis 20%
Sahil Vemuri Inverse Zig-Zag, De-quantization, MATLAB Decoder 20%

Table 3. Team Member Contributions and Percentage Split
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